

POST-INSTALLED REBAR DESIGN

Stella Nerbano May, 2017

• 1.0 Main differences: Rebar theory vs. Anchor theory

- 2.0 Static design of p.i. rebar: HIT Rebar Design Method
- 3.0 Fire design of p.i. rebar
- 4.0 PROFIS Rebar

REBAR APPLICATIONS VS. ANCHOR APPLICATIONS

	"Rebar theory" Post-installed rebar	"Anchor theory" Bonded anchor
Load on the bar	Tension (roughness of joint critical for the shear transfer)	Tension, shear, combination of both

INFLUENCE OF THE JOINT: SMOOTH VS. ROUGH

- The post-installed rebar clamps the two faces together, enabling shear transfer through friction acting over the interface surface area. The roughness of the interface surface is critical.
- The post installed rebar acts in tension only.
- Carbonated layer should be removed

(Palieraki et al. 2014; EC2:EN1992-1-1:2004 (6.2.5))

- The anchor takes up the shear load.
- The roughness of the interface surface does not play any role.

	"Rebar theory" Post-installed rebar	"Anchor theory" Bonded anchor
Load on the bar	Tension (roughness of joint critical for the shear transfer)	Tension, shear, combination of both
Load transfer mechanism	Equilibrium with local or global concrete struts	Utilization of concrete tensile strength

CONFINED VS. UNCONFINED CONCRETE

	"Rebar theory" Post-installed rebar	"Anchor theory" Bonded anchor
Load on the bar	Tension (roughness of joint critical for the shear transfer)	Tension, shear, combination of both
Load transfer mechanism	Equilibrium with local or global concrete struts	Utilization of concrete tensile strength
Failure modes	Steel yielding, pull out, splitting	Steel failure, concrete cone failure, pull out, splitting

	"Rebar theory" Post-installed rebar	"Anchor theory" Bonded anchor
Load on the bar	Tension (roughness of joint critical for the shear transfer)	Tension, shear, combination of both
Load transfer mechanism	Equilibrium with local or global concrete struts	Utilization of concrete tensile strength
Failure modes	Steel yielding, pull out, splitting	Steel failure, concrete cone failure, pull out, splitting
Design steps	 Calculation of steel reinforcement Calculation of required anchorage length 	 Calculation of all characteristic capacities Determination of minimum capacity controlling failure anchorage

	"Rebar theory" Post-installed rebar	"Anchor theory" Bonded anchor
Load on the bar	Tension (roughness of joint critical for the shear transfer)	Tension, shear, combination of both
Load transfer mechanism	Equilibrium with local or global concrete struts	Utilization of concrete tensile strength
Failure modes	Steel yielding, pull out, splitting	Steel failure, concrete cone failure, pull out, splitting
Design steps	 Calculation of steel reinforcement Calculation of required anchorage length 	 Calculation of all characteristic capacities Determination of minimum capacity controlling failure anchorage
"Result of theory application"	Anchorage length (I _{bd})	Capacity of the anchor (N _{Rk})

	"Rebar theory" Post-installed rebar	"Anchor theory" Bonded anchor
Load on the bar	Tension (roughness of joint critical for the shear transfer)	Tension, shear, combination of both
Load transfer mechanism	Equilibrium with local or global concrete struts	Utilization of concrete tensile strength
Failure modes	Steel yielding, pull out, splitting	Steel failure, concrete cone failure, pull out, splitting
Design steps	 Calculation of steel reinforcement Calculation of required anchorage length 	 Calculation of all characteristic capacities Determination of minimum capacity controlling failure anchorage
"Result of theory application"	Anchorage length (I _{bd})	Capacity of the anchor (N _{Rk})
Minimum concrete cover (min (spacing; edge distance))	According to EC2	According to ETA

	"Rebar theory" Post-installed rebar	"Anchor theory" Bonded anchor
Load on the bar	Tension (roughness of joint critical for the shear transfer)	Tension, shear, combination of both
Load transfer mechanism	Equilibrium with local or global concrete struts	Utilization of concrete tensile strength
Failure modes	Steel yielding, pull out, splitting	Steel failure, concrete cone failure, pull out, splitting
Design steps	 Calculation of steel reinforcement Calculation of required anchorage length 	 Calculation of all characteristic capacities Determination of minimum capacity controlling failure anchorage
"Result of theory application"	Anchorage length (I _{bd})	Capacity of the anchor (N _{Rk})
Minimum concrete cover (min (spacing; edge distance))	According to EC2	According to ETA
Allowable anchorage length	I _{b,min} ≥ max(0.3I _{brqd} ,f _{yd} ; 10φ; 100mm)	$4\phi \le I_{b,min} \le 20\phi$

	"Rebar theory" Post-installed rebar	"Anchor theory" Bonded anchor
Load on the bar	Tension (roughness of joint critical for the shear transfer)	Tension, shear, combination of both
Load transfer mechanism	Equilibrium with local or global concrete struts	Utilization of concrete tensile strength
Failure modes	Steel yielding, pull out, splitting	Steel failure, concrete cone failure, pull out, splitting
Design steps	 Calculation of steel reinforcement Calculation of required anchorage length 	 Calculation of all characteristic capacities Determination of minimum capacity controlling failure anchorage
"Result of theory application"	Anchorage length (I _{bd})	Capacity of the anchor (N _{Rk})
Minimum concrete cover (min (spacing; edge distance))	According to EC2	According to ETA
Allowable anchorage length	l _{b,min} ≥ max(0.3l _{brqd} ,f _{yd} ; 10φ; 100mm)	$4\phi \le I_{b,min} \le 20\phi$
Concrete	Uncracked/craked	Cracked/uncraked

CONCRETE CONDITIONS: UNCRACKED VS. CRACKED

EUROPEAN REGULATORY FRAMEWORK FOR POST-INSTALLED REBAR

		"Rebar theor "Design of rebar as a	' y'' a rebar''		"Anchor the "Design of rebar as a	theory" as an anchor"	
	Static	Fire	Seismic	Static	Fire	Seismic	
Product Qualification		EAD	x	ETAG 001 – part 5	×	TR 049	
Technical data		ETA	v CSTB regional approval	ETA	v CSTB/DIBt regional approval	ETA	
Design method	¥	EC2	EC2 based	TR 029 (EN 1992-4)	Local regulations	↓ TR 045 (EN 1992-4)	

- 1.0 Main differences: Rebar theory vs. Anchor theory
- 2.0 Static design of p.i. rebar: HIT Rebar Design Method
- 3.0 Fire design of p.i. rebar
- 4.0 PROFIS Rebar

EUROPEAN REGULATORY FRAMEWORK FOR POST-INSTALLED REBAR

		"Rebar theor "Design of rebar as a	' y'' a rebar''		"Anchor the "Design of rebar as a	theory" as an anchor"	
	Static	Fire	Seismic	Static	Fire	Seismic	
Product Qualification		EAD	x	ETAG 001 – part 5	×	TR 049	
Technical data		ETA	v CSTB regional approval	ETA	v CSTB/DIBt regional approval	ETA	
Design method	¥	EC2	EC2 based	TR 029 (EN 1992-4)	Local regulations	↓ TR 045 (EN 1992-4)	

EAD 330087-00-0601 INCLUDES THE ASSESSMENT OF STATIC AND FIRE PERFORMANCE OF P.I. REBAR

EAD RESTRICTS THE RANGE OF P.I. REBAR APPLICATIONS TO CASES WHERE CONCRETE CONE IS PREVENTED

BASED ON THE EAD P.I. REBAR AND CAST-IN HAVE THE SAME BEHAVIOR

It shall be shown by the tests according to Table 2.4 that the post-installed rebar system can develop the same bond resistance with the same safety margin as cast-in-place rebar according to EN 1992-1-1. In EN 1992-1-1 no requirements for testing are given, but the values for f_{bd} can be calculated according to EN 1992-1-1, 8.4.2. The required values of bond resistance $f_{bm,rqd}$ to show equivalence to the bond strength used in design according to EN 1992-1-1 are given in Table 2.6 as a function of the concrete class.

Concrete strength class	Required bond resistance for post-installed rebar f _{bm,rqd} [N/mm ²]	Design value of the ultimate bond stress according to EN 1992-1-1 ^{**)} f _{bd} [N/mm²]
C12/15	7,1	1,6
C16/20	8,6	2,0
C20/25	10,0	2,3
C25/30	11,6	2,7
C30/37	13,1	3,0
C35/45	14,5	3,4
C40/50	15,9	3,7
C45/55	17,2	4,0
C50/60	18,4	4,3

TWO MAIN PROBLEMS: RIGID CONNECTIONS CANNOT BE DESIGNED AND SOLUTIONS CAN BE UNFEASIBLE

HILTI DEVELOPED A UNIQUE HIT REBAR METHOD THAT EXTENDS EC2 DESIGN AND COVERS MORE APPLICATIONS

HIT Rebar design Method is based on Rebar theory but extends the range of EC2 applications, based on Hilti own testing:

- 1. Allows reduction of anchorage lengths for some applications considered in EOTA TR 023
- 2. Provides a Hilti own design method for moment resisting connections (frame node).

Design solution

Moment connection: solution possible **with Hilti** design method (based on Hilti own testing). Not coverd by EC2/TR023 cause concret cone failure is assumed.

HILTI HIT REBAR DESIGN METHOD

HILTI DEVELOPED A UNIQUE HIT REBAR METHOD THAT EXTENDS EC2 DESIGN AND COVERS MORE APPLICATIONS

HIT Rebar design Method is based on Rebar theory but extends the range of EC2 applications, based on Hilti own testing:

- 1. Allows reduction of anchorage lengths for some applications considered in EOTA TR 023
- 2. Provides a Hilti own design method for moment resisting connections (frame node).

Not coverd by EC2/TR023 cause concret cone failure is assumed.

HIT REBAR DESIGN METHOD 1ST PILLAR: REDUCTION OF THE ANCHORAGE LENGTH

BOND STRENGTH OF P.I. REBAR IS LIMITED TO THAT OF CAST-IN REBAR

$\rm A_2$ TAKES INTO ACCOUNT THE MINIMUM CONCRETE COVER $\rm C_D$

(EC2:EN1992-1-1:2004 (8.4.4)

EXPERIMENTAL BEHAVIOR IN A CONFINED TEST SET UP OF A P.I. REBAR INSTALLED WITH HILTI'S MORTARS

EXPERIMENTAL BEHAVIOR IN A CONFINED TEST SET UP OF P.I. REBAR AND CAST-IN

THE HIT REBAR DESIGN METHOD RESULTS FROM EXPERIMENTAL ANALYSIS

THE PULL-OUT BOND STRESS COMES FROM THE ANCHOR APPROVAL

Uncracked concrete (RE500V3)

Reinforcing bar (rebar)				φ12	φ 14	φ 1 6	φ 20	φ 25	φ 2 8	φ 30	¢ 32	
Installation safety factor												
Hammer drilling	$\gamma_2^{(1)} = \gamma_{inst}^2$	⁰ [-]	1,0									
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	$\gamma_2^{(1)} = \gamma_{inst}^2$	• [-]	-	- 1,0						-		
Diamond coring	$\gamma_2^{(1)} = \gamma_{inst}^2$	° [-]		1,2				1	,4			
Diamond coring with roughening with Hilti roughening tool TE-YRT	$\gamma_2{}^{1)} = \gamma_{inst}{}^2$	• [-]		-			1,0				-	
Hammer drilling in flooded holes	$\gamma_2^{(1)} = \gamma_{inst}^2$	⁰ [-]					1,4					
Steel failure rebars												
Characteristic resistance	NRk,s	[kN]	43	62	85	111	173	270	339	388	442	
Partial safety factor	γms,N	[-]					1,4					
Combined pullout and concrete cone t	failure											
Characteristic bond resistance in non-cra in hammer drilled holes and hammer drill and diamond cored holes with roughenin	icked concr ed holes wi g with Hilti r	ete C20/25 th Hilti holl oughening	; ow dril tool T	l bit TE E-YR1	E-CD o	r TE-Y	D					
Temperature range I: 40°C / 24°C	TRk,ucr	[N/mm ²]	14	14	14	14	14	13	13	13	13	
Temperature range II: 70°C / 43°C	TRk,ucr	[N/mm ²]	11	11	11	10	10	10	9,5	9,5	9,5	
Characteristic bond resistance in non-cra in diamond cored holes.	icked concr	ete C20/25	5									
Temperature range I: 40°C / 24°C	TRk,ucr	[N/mm ²]	9	9	9	9	9	9	9,5	9,5	9,5	
Temperature range II: 70°C / 43°C	TRk,ucr	[N/mm ²]	6,5	6,5	6,5	6,5	7	7	7	7	7	
Characteristic bond resistance in non-cra in hammer drilled holes and installation ir	Characteristic bond resistance in non-cracked concrete C20/25 in hammer drilled holes and installation in water-filled holes											
Temperature range I: 40°C / 24°C	TRk,ucr	[N/mm ²]	12	12	12	12	12	11	11	11	11	
Temperature range II: 70°C / 43°C	T _{Rk,ucr}	[N/mm ²]	9	9	9	9	8,5	8,5	8,5	8	8	
Factor acc. to section 6.2.2.3 of CEN/TS 1992-4:2009 part 5	k ₈	[-]	10,1				I					

Cracked concrete (RE500V3)

Reinforcing bar (rebar)	φ 1 0	¢ 12	¢ 14	ф 1 6	¢ 20	¢ 2 5	¢ 28	φ 3 0	¢ 32
Combined pullout and concrete cone failure (continued)									
Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes and hammer drilled holes with Hilti hollow drill bit TE-CD or TE-YD and diamond cored holes with roughening with Hilti pouphening tool TE-YRT									
Temperature range I: 40°C / 24°C TRk, or [N/m	nm²] 8,5	9,5	9,5	9,5	10	10	11	11	11
Temperature range II: 70°C / 43°C TRk,cr [N/m	nm²] 7	8	8	8	8	8	8	8	8

PROFIS

1								
	Basic design inform	mation	Ex	isting structure		Nev	v structure	Solutio
	Parallel cracks top	Short ter	m:		20 °	C	Тор:	3
	Parallel cracks bottom	Long ter	m:		20 °	C	Bottom:	:
		Installati	on:	from 5 °C to 40 °	С	-		
	Base material		Serv	ice temperature			Min	concrete cov

HIGHER BOND STRENGTH WITH HIT REBAR METHOD: REDUCTION OF THE ANCHORAGE LENGTH

 $I_{bd,EC2} = (\phi/4)(f_{yd}/f_{bd,EC2})$

 $I_{bd,HRM} = (\phi/4)(f_{yd}/f_{bd,Hilti})$

DESIGN A POST-INSTALLED REBAR ACCORDING TO HIT REBAR DESIGN METHOD FOLLOWING THE EC2 DESIGN

EC2 restricts the use of bond strength to that of cast-in.

$$\alpha_2 = 1 - 0.15 \cdot \frac{c_d - \phi}{\phi} \qquad \qquad l_{bd,spl} = \frac{\phi}{4} \cdot \frac{\sigma_{sd}}{f_{bd}} \cdot \alpha_2$$

HIT Rebar Method through Hilti's extensive inhouse research provided benefit for $c_d/\phi > 3$.

It allows higher bond strength thus reducing embedment depths.

$$\alpha_{2}' = \frac{1}{\frac{1}{0.7} + \delta \cdot \frac{c_{d} - 3 \cdot \phi}{\phi}} \qquad \qquad l_{bd,spl} = \frac{\phi}{4} \cdot \frac{\sigma_{sd}}{f_{bd}} \cdot \alpha_{2}'$$

SLAB TO WALL: SIMPLY SUPPORTED CONNECTION: HIT REBAR DESIGN METHOD BENEFITS

case

simply supported

Modeling in Profis Rebar

Simply supported wall/slab

Anchorage length

	EC2	HRM		
Product	HIT-RE 500 V3			
Φ [mm]	12	12		
I _{bd,bottom} [mm]	269	170		
l _{bd,top} [mm]	170	170		
Average saving [%]	-	18.5		

HILTI DEVELOPED A UNIQUE HIT REBAR METHOD THAT EXTENDS EC2 DESIGN AND COVERS MORE APPLICATIONS

HIT Rebar design Method is based on Rebar theory but extends the range of EC2 applications, based on Hilti own testing:

- 1. Allows reduction of anchorage lengths for some applications considered in EOTA TR 023
- 2. Provides a Hilti own design method for moment resisting connections (frame node).

TR023 LIMITS THE APPLICATIONS TO CASES WHERE THE CONCRETE CONE FAILURE IS PREVENTED

TO OVERCOME THE DESIGN LIMITATIONS BY EC2, HILTI DEVELOPED A SOLUTION FOR FRAME NODES

Numerical analysis

The force flow in the frame node is assessed by means of Finite Element Analysis (Hilti research).

Strut and tie model

The strut and tie model is developed for straight bars (Hilti research)

THE HIT REBAR DESIGN METHOD (HRM) IS BASED ON THE STRUT AND TIE MODEL FOR CAST-IN CONNECTIONS

STRESS IN THE NODE IS AFFECTED BY THE STRUT ANGLE

Stress to be checked in the design

- 1. Anchorage post-installed reinforcement
- 2. Compressive strut in node
- 3. Splitting force in transition area
- 4. Tension reinforcement in node

THE FRAME NODE ANGLE IS REDUCED: REINFORCEMENT REQUIRED IN THE EXISTING SLAB INCREASES

Design example

Frame node angle	60°				
Drilled hole length	366 mm				
Compression in strut direction	411 kN/m				
Splitting stress	0,208 N/mm2				
Additional tensile force	105 kN/m				

Design parameters

Frame node angle	45°
Drilled hole length	284 mm
Compression in strut direction	503 kN/m
Splitting stress	0,291 N/mm2
Additional tensile force	256 kN/m

- 1.0 Main differences: Rebar theory vs. Anchor theory
- 2.0 Static design of p.i. rebar: HIT Rebar Design Method
- 3.0 Fire design of p.i. rebar
- 4.0 PROFIS Rebar

THANK YOU

